Combined cytogenetic and molecular methods for taxonomic verification and description of Brassica populations deriving from different origins

Main Article Content

Cyril Falentin
https://orcid.org/0000-0002-9901-3412
Houria Hadj-Arab
https://orcid.org/0009-0005-7352-7553
Fella Aissiou
https://orcid.org/0009-0009-7245-2253
Claudia Bartoli
https://orcid.org/0000-0003-1461-2983
Giuseppe Bazan
https://orcid.org/0000-0002-4827-9579
Matéo Boudet
https://orcid.org/0000-0002-7028-7620
Lydia Bousset-Vaslin
https://orcid.org/0000-0002-1600-1900
Marwa Chouikhi
https://orcid.org/0009-0005-3895-4437
Olivier Coriton
Gwénaelle Deniot
https://orcid.org/0009-0004-1196-3256
Julie Ferreira de Carvalho
https://orcid.org/0000-0001-6200-3344
Laurène Gay
https://orcid.org/0000-0002-9861-8188
Anna Geraci
https://orcid.org/0000-0002-4860-487X
Pascal Glory
Virginie Huteau
Riadh Ilahy
https://orcid.org/0000-0001-9405-3098
Vincenzo Ilardi
José A. Jarillo
https://orcid.org/0000-0002-2963-7641
Vladimir Meglic
https://orcid.org/0000-0002-7739-0145
Elisabetta Oddo
https://orcid.org/0000-0003-1548-2551
Monica Pernas
https://orcid.org/0000-0002-6521-9164
Manuel Pineiro
https://orcid.org/0000-0002-4640-6511
Barbara Pipan
https://orcid.org/0000-0002-3860-119X
Thouraya Rhim
Vincent Richer
https://orcid.org/0009-0009-5809-2554
Fulvia Rizza
Joelle Ronfort
https://orcid.org/0000-0002-1011-308X
Mathieu Rousseau-Gueutin
https://orcid.org/0000-0002-1130-1090
Rosario Schicchi
Lovro Sinkovic
https://orcid.org/0000-0002-6123-8085
Maryse Taburel
https://orcid.org/0009-0003-9756-0740
Valeria Terzi
Sylvain Théréné
Mathieu Tiret
https://orcid.org/0000-0001-5389-4886
Imen Tlili
Marie-Hélène Wagner
https://orcid.org/0000-0001-6224-5271
Franz Werner Badeck
https://orcid.org/0000-0001-7821-8825
Anne-Marie Chèvre
https://orcid.org/0000-0001-5312-032X

Abstract

Agriculture faces great challenges to overcome global warming and improve system sustainability, requiring access to novel genetic diversity. So far, wild populations and local landraces remain poorly explored. This is notably the case for the two diploid species, Brassica oleracea L. (CC, 2n=2x=18) and B. rapa L. (AA, 2n=2x=20). In order to explore the genetic diversity in both species, we have collected populations in their centre of origin, the Mediterranean basin, on a large contrasting climatic and soil gradient from northern Europe to southern sub-Saharan regions. In these areas, we also collected 14 populations belonging to five B. oleracea closely related species. Our objective was to ensure the absence of species misidentification at the seedling stage among the populations collected and to describe thereafter their origins. We combined flow cytometry, sequencing of a species-specific chloroplast genomic region, as well as cytogenetic analyses in case of unexpected results for taxonomic verification. Out of the 112 B. oleracea and 154 B. rapa populations collected, 103 and 146, respectively, presented a good germination rate and eighteen populations were misidentified. The most frequent mistake was the confusion of these diploid species with B. napus. Additionally for B. rapa, two autotetraploid populations were observed. Habitats of the collected and confirmed wild populations and landraces are described in this study. The unique plant material described here will serve to investigate the genomic regions involved in adaptation to climate and microbiota within the framework of the H2020 Prima project ‘BrasExplor’.

 

 

Article Details

How to Cite
Falentin, C., Hadj-Arab, H., Aissiou, F., Bartoli, C., Bazan, G., Boudet, M., Bousset-Vaslin, L., Chouikhi, M., Coriton, O., Deniot, G., Ferreira de Carvalho, J., Gay, L., Geraci, A., Glory, P., Huteau, V., Ilahy, R., Ilardi, V., Jarillo, J. A., Meglic, V., Oddo, E., Pernas, M., Pineiro, M., Pipan, B., Rhim, T., Richer, V., Rizza, F., Ronfort, J., Rousseau-Gueutin, M., Schicchi, R., Sinkovic, L., Taburel, M., Terzi, V., Théréné, S., Tiret, M., Tlili, I., Wagner, M.-H., Werner Badeck, F. and Chèvre, A.-M. (2024) “Combined cytogenetic and molecular methods for taxonomic verification and description of Brassica populations deriving from different origins”, Genetic Resources, 5(9), pp. 61–71. doi: 10.46265/genresj.RYAJ6068.
Section
Original Articles
References

Baskin, CC and J M Baskin (1998). “Seeds. Ecology, Biogeography and evolution of dormancy and germination”. In: San Diego: US: Academic Press, p. 666.

Belser, C et al. (2018). “Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps”. Nature Plants 4, pp. 879–887. DOI: https://doi.org/10.1038/s41477-018-0289-4.

Biancolillo, A et al. (2023). “Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces”. Applied Sciences 13. DOI: https://doi.org/10.3390/app13116591.

Bird, K A et al. (2017). “Population Structure and Phylogenetic Relationships in a Diverse Panel of Brassica rapa L. ” Frontiers in Plant Science 8. DOI: https://doi.org/10.3389/fpls.2017.00321.

Cai, C et al. (2022). “Evidence for two domestication lineages supporting a middle-eastern origin for Brassica oleracea crops from diversified kale populations”. Horticulture Research 9(166). DOI: https://doi.org/10.1093/hr/uhac033.

Cai, X et al. (2021). “Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa”. Genome Biology 22, pp. 166–166. DOI: https://doi.org/10.1186/s13059-021-02383-2.

Cheng, F, R Sun, et al. (2016). “Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea”. Nature Genetics 48, pp. 1218–1224. DOI: https://doi.org/10.1038/ng.3634.

Cheng, F, J Wu, and X Wang (2014). “Genome triplication drove the diversification of Brassica plants”. 1(14024). DOI: https://doi.org/10.1038/hortres.2014.24.

Finch-Savage, W E and G Leubner-Metzger (2006). “Seed dormancy and the control of germination”. New Phytologist 171, pp. 501–523. DOI: https://doi.org/10.1111/j.1469-8137.2006.01787.x.

Gerlach, W L and J R Bedbrook (1979). “Cloning and characterization of ribosomal RNA genes from wheat and barley”. Nucleic Acids Research 7. DOI: https://doi.org/10.1093/nar/7.7.1869.

Gomez-Campo, C et al. (2005). “An exploration of wild Brassica oleracea L. germplasm in Northern Spain”. Genetic Resources and Crop Evolution 52, pp. 7–13.

Howell, E C et al. (2008). “A and C Genome Distinction and Chromosome Identification in Brassica napus by Sequential Fluorescence in Situ Hybridization and Genomic in Situ Hybridization”. Genetics 180, pp. 1849–1857. DOI: https://doi.org/10.1534/genetics.108.095893.

INPN (2024). National Inventory of Natural Heritage in France. URL: https://inpn.mnhn.fr/accueil/index?lg=en.

Ksia˛˙zczyk, T et al. (2011). “Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus”. Chromosoma 120, pp. 557–571. DOI: https://doi.org/10.1007/s00412-011-0331-z.

Laghetti, G et al. (2005). ““Mugnoli”: a Neglected Race of Brassica oleracea L. from Salento (Italy)”. Genetic Resources and Crop Evolution 52, pp. 635–639. DOI: https://doi.org/10.1007/s10722-005-8511-4.

Leflon, M et al. (2006). “Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids”. Theoretical and Applied Genetics 113. DOI: https://doi.org/10.1007/s00122-006-0393-0.

Li, P et al. (2017). “A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U”. Frontiers in Plant Science 8. DOI: https://doi.org/10.3389/fpls.2017.00111.

Mabry, M E et al. (2021). “The Evolutionary History of Wild, Domesticated, and Feral Brassica oleracea (Brassicaceae)”. Molecular Biology and Evolution 38, pp. 4419–4434. DOI: https://doi.org/10.1093/molbev/msab183.

Maggioni, L et al. (2020). “Survey and genetic diversity of wild Brassica oleracea L. germplasm on the Atlantic coast of France”. Genetic Resources and Crop Evolution 67, pp. 1853–1866. DOI: https://doi.org/10.1007/s10722-020-00945-0.

McAlvay, A C et al. (2021). “Brassica rapa Domestication: Untangling Wild and Feral Forms and Convergence of Crop Morphotypes”. Molecular Biology and Evolution 38, pp. 3358–3372. DOI: https://doi.org/10.1093/molbev/msab108.

Olsson, G and S Ellerström (1980). “Polyploidy breeding in Europe”. In: Brassica crops and wild allies; biology and breeding. Ed. by S. Tsunoda, K. Hinata, and C. Grimez-campo. Tokyo: Japan Scientific Soc. Press, pp. 167–190.

Perumal, S et al. (2021). “Nuclear and chloroplast genome diversity revealed by low-coverage whole-genome shotgun sequence in 44 Brassica oleracea breeding lines”. Horticultural Plant Journal 7, pp. 539–551. DOI: https://doi.org/10.1016/j.hpj.2021.02.004.

Qi, X et al. (2017). “Genomic inferences of domestication events are corroborated by written records in Brassica rapa”. Molecular Ecology 26, pp. 3373–3388. DOI: https://doi.org/10.1111/mec.14131.

Suay, L et al. (2014). “Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica”. New Phytologist 201, pp. 645–656. DOI: https://doi.org/10.1111/nph.12534.

Subramanian, P, S. -H Kim, and B. -S Hahn (2023). “Brassica biodiversity conservation: prevailing constraints and future avenues for sustainable distribution of plant genetic resources”. Frontiers in Plant Science 14. DOI: https://doi.org/10.3389/fpls.2023.1220134.