The Versailles Arabidopsis Stock Center (VASC): original genetic resources exploiting both induced and natural diversity to investigate gene functions and analyze the impact of variation on plant biology

Main Article Content

Anthony Ricou
https://orcid.org/0009-0009-3784-5561
Carine Géry
https://orcid.org/0009-0003-6204-4922
Christine Horlow
https://orcid.org/0000-0003-1212-2083
Olivier Loudet
https://orcid.org/0000-0003-3717-0137
Christine Camilleri
https://orcid.org/0000-0002-5535-0281

Abstract

Arabidopsis thaliana is a powerful plant model for functional biology, genetics and, more recently, population genomics. The Versailles Arabidopsis Stock Center collects, produces, preserves, characterizes and distributes various Arabidopsis biological resources. Besides large collections of mutants, including homozygous mutant lines, this stock centre offers numerous natural genotypes collected worldwide, as well as resources resulting from crosses between these variants. Most of the resources are unique and can be useful to a wide range of users, ensuring cumulative characterization of the same material over time. They are accompanied by molecular characterization, genotyping or sequencing data, enabling the analysis of diversity’s impact, particularly on complex plant traits. The collections are made easily and reliably available through an information system comprising a database and a web portal for description and distribution (https://publiclines.versailles.inrae.fr/). Several thousand seed lots are provided each year to the international scientific community.

 

 

Article Details

How to Cite
Ricou, A., Géry, C., Horlow, C., Loudet, O. and Camilleri, C. (2025) “The Versailles Arabidopsis Stock Center (VASC): original genetic resources exploiting both induced and natural diversity to investigate gene functions and analyze the impact of variation on plant biology”, Genetic Resources, (S2), pp. 70–77. doi: 10.46265/genresj.HNCM8135.
Section
Genebank report
References

Agorio, A et al. (2017). “An Arabidopsis natural epiallele maintained by a feed-forward silencing loop between histone and DNA”. PLoS Genetics 13, e1006551. DOI: https://doi.org/10.1371/journal.pgen.1006551. DOI: https://doi.org/10.1371/journal.pgen.1006551

Arabidopsis Genome Initiative (2000). “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana”. Nature 408, pp. 796–815. DOI: https://doi.org/10.1038/35048692. DOI: https://doi.org/10.1038/35048692

Balzergue, S et al. (2001). “Improved PCR-walking for large-scale isolation of plant T-DNA borders”. BioTechniques 30, pp. 496–504. DOI: https://doi.org/10.2144/01303bm06. DOI: https://doi.org/10.2144/01303bm06

Bartoli, C et al. (2018). “In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana”. The ISME journal 12, pp. 2024–2038. DOI: https://doi.org/10.1038/s41396-018-0152-7. DOI: https://doi.org/10.1038/s41396-018-0152-7

Bazakos, C et al. (2017). “New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype”. Annual Review of Plant Biology 68, pp. 435–455. DOI: https://doi.org/10.1146/annurev-arplant-042916-040820. DOI: https://doi.org/10.1146/annurev-arplant-042916-040820

Bechtold, N, J Ellis, and G Pelletier (1993). “In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants”. C. R. Acad. Sci. Paris 316, pp. 1194–1199.

Bikard, D et al. (2009). “Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana”. Science 323, pp. 623–626. DOI: https://doi.org/10.1126/science.1165917. DOI: https://doi.org/10.1126/science.1165917

Brachi, B, N Faure, et al. (2010). “Linkage and association mapping of Arabidopsis thaliana flowering time in nature”. PLoS Genetics 6, e1000940. DOI: https://doi.org/10.1371/journal.pgen.1000940. DOI: https://doi.org/10.1371/journal.pgen.1000940

Brachi, B, R Villoutreix, et al. (2013). “Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana”. Molecular Ecology 22, pp. 4222–4240. DOI: https://doi.org/10.1111/mec.12396. DOI: https://doi.org/10.1111/mec.12396

Brock, M T et al. (2020). “A Nested Association Mapping Panel in Arabidopsis thaliana for Mapping and Characterizing Genetic Architecture”. G3 Genes|Genomes|Genetics, 10(10), pp. 3701–3708. DOI: https://doi.org/10.1534/g3.120.401239. DOI: https://doi.org/10.1534/g3.120.401239

Capilla-Perez, L et al. (2018). “The HEM Lines: A New Library of Homozygous Arabidopsis thaliana EMS Mutants and its Potential to Detect Meiotic Phenotypes”. Frontiers in Plant Science 9, p. 1339. DOI: https://doi.org/10.3389/fpls.2018.01339. DOI: https://doi.org/10.3389/fpls.2018.01339

Carrère, S et al. (2024). “A fully sequenced collection of homozygous EMS mutants for forward and reverse genetic screens in Arabidopsis thaliana”. The Plant Journal 119, pp. 3015–3026. DOI: https://doi.org/10.1111/tpj.16954. DOI: https://doi.org/10.1111/tpj.16954

Couteau, F et al. (1999). “Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis”. The Plant Cell 11, pp. 1623–1634. DOI: https://doi.org/10.1105/tpc.11.9.1623. DOI: https://doi.org/10.1105/tpc.11.9.1623

Cubillos, F A et al. (2012). “Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures”. BMC Genomics 13, p. 117. DOI: https://doi.org/10.1186/1471-2164-13-117. DOI: https://doi.org/10.1186/1471-2164-13-117

Dehaene, N et al. (2024). “The mitochondrial orf117Sha gene desynchronizes pollen development and causes pollen abortion in Arabidopsis Sha cytoplasmic male sterility”. Journal of Experimental Botany 75, pp. 4851–4872. DOI: https://doi.org/10.1093/jxb/erae214. DOI: https://doi.org/10.1093/jxb/erae214

Durand, S, N Bouché, et al. (2012). “Rapid establishment of genetic incompatibility through natural epigenetic variation”. Current Biology 22, pp. 326–331. DOI: https://doi.org/10.1016/j.cub.2011.12.054. DOI: https://doi.org/10.1016/j.cub.2011.12.054

Durand, S, A Ricou, et al. (2021). “A restorer-of-fertility-like pentatricopeptide repeat protein promotes cytoplasmic male sterility in Arabidopsis thaliana”. The Plant journal 105, pp. 124–135. DOI: https://doi.org/10.1111/tpj.15045. DOI: https://doi.org/10.1111/tpj.15045

Frachon, L, C Libourel, et al. (2017). “Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time”. Nature Ecology & Evolution 1, pp. 1551–1561. DOI: https://doi.org/10.1038/s41559-017-0297-1. DOI: https://doi.org/10.1038/s41559-017-0297-1

Frachon, L, B Mayjonade, et al. (2019). “Adaptation to Plant Communities across the Genome of Arabidopsis thaliana”. Molecular Biology and Evolution 36, pp. 1442–1456. DOI: https://doi.org/10.1093/molbev/msz078. DOI: https://doi.org/10.1093/molbev/msz078

Gallego, M E et al. (2001). “Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity”. The Plant Journal 25, pp. 31–41. DOI: https://doi.org/10.1046/j.1365-313x.2001.00928.x. DOI: https://doi.org/10.1046/j.1365-313x.2001.00928.x

Gobron, N et al. (2013). “A cryptic cytoplasmic male sterility unveils a possible gynodioecious past for Arabidopsis thaliana”. PloS One 8, e62450. DOI: https://doi.org/10.1371/journal.pone.0062450. DOI: https://doi.org/10.1371/journal.pone.0062450

Gravot, A et al. (2011). “Genetic and physiological analysis of the relationship between partial resistance to clubroot and tolerance to trehalose in Arabidopsis thaliana”. The New phytologist 191, pp. 1083–1094. DOI: https://doi.org/10.1111/j.1469-8137.2011.03751.x. DOI: https://doi.org/10.1111/j.1469-8137.2011.03751.x

Hanemian, M et al. (2020). “Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana”. Nature Communications 11, p. 4140. DOI: https://doi.org/10.1038/s41467-020-17896-w. DOI: https://doi.org/10.1038/s41467-020-17896-w

I Mckhann, H et al. (2004). “Nested core collections maximizing genetic diversity in Arabidopsis thaliana”. The Plant journal 38, pp. 193–202. DOI: https://doi.org/10.1111/j.1365-313X.2004.02034.x. DOI: https://doi.org/10.1111/j.1365-313X.2004.02034.x

Jiao, W B et al. (2021). “The Evolutionary Dynamics of Genetic Incompatibilities Introduced by Duplicated Genes in Arabidopsis thaliana”. Molecular Biology and Evolution 38, pp. 1225–1240. DOI: https://doi.org/10.1093/molbev/msaa306. DOI: https://doi.org/10.1093/molbev/msaa306

Johannes, F et al. (2009). “Assessing the impact of transgenerational epigenetic variation on complex traits”. PLoS Genetics 5, e1000530. DOI: https://doi.org/10.1371/journal.pgen.1000530. DOI: https://doi.org/10.1371/journal.pgen.1000530

Lian, Q et al. (2024). “A pan-genome of 69 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range”. Nature Genetics 56, pp. 982–991. DOI: https://doi.org/10.1038/s41588-024-01715-9. DOI: https://doi.org/10.1038/s41588-024-01715-9

Loudet, O et al. (2005). “Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family”. Theoretical and Applied Genetics 110, pp. 742–753. DOI: https://doi.org/10.1007/s00122-004-1900-9. DOI: https://doi.org/10.1007/s00122-004-1900-9

Marchadier, E et al. (2019). “The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana”. PLoS Genetics 15, e1007954. DOI: https://doi.org/10.1371/journal.pgen.1007954. DOI: https://doi.org/10.1371/journal.pgen.1007954

Mercier, R et al. (2001). “How to characterize meiotic functions in plants?” Biochimie 83, pp. 1348–1355. DOI: https://doi.org/10.1016/S0300-9084(01)01348-7. DOI: https://doi.org/10.1016/S0300-9084(01)01348-7

Petitpas, M et al. (2024). “Environmental conditions modulate the effect of epigenetic factors controlling the response of Arabidopsis thaliana to Plasmodiophora brassicae”. Frontiers in plant science 15, p. 1245545. DOI: https://doi.org/10.3389/fpls.2024.1245545. DOI: https://doi.org/10.3389/fpls.2024.1245545

Poque, S et al. (2015). “Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana”. BMC plant biology 15, pp. 159–159. DOI: https://doi.org/10.1186/s12870-015-0559-5. DOI: https://doi.org/10.1186/s12870-015-0559-5

Reiser, L et al. (2024). “The Arabidopsis Information Resource in 2024”. Genetics 227, iyae027. DOI: https://doi.org/10.1093/genetics/iyae027. DOI: https://doi.org/10.1093/genetics/iyae027

Ricou, A et al. (2025). “Identification of novel genes responsible for a pollen killer present in local natural populations of Arabidopsis thaliana”. PLoS genetics 21, e1011451. DOI: https://doi.org/10.1371/journal.pgen.1011451. DOI: https://doi.org/10.1371/journal.pgen.1011451

Roux, F, L Frachon, and C Bartoli (2023). “The Genetic Architecture of Adaptation to Leaf and Root Bacterial Microbiota in Arabidopsis thaliana”. Molecular Biology and Evolution 40, msad093. DOI: https://doi.org/10.1093/molbev/msad093. DOI: https://doi.org/10.1093/molbev/msad093

Roux, F, T Mary-Huard, et al. (2016). “Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field”. Proceedings of the National Academy of Sciences 113, pp. 3687–3692. DOI: https://doi.org/10.1073/pnas.1520687113. DOI: https://doi.org/10.1073/pnas.1520687113

Shahzad, Z et al. (2016). “A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics”. Cell 167, pp. 87–98. DOI: https://doi.org/10.1016/j.cell.2016.08.068. DOI: https://doi.org/10.1016/j.cell.2016.08.068

Simon, M, S Durand, N Pluta, et al. (2016). “Genomic Conflicts that Cause Pollen Mortality and Raise Reproductive Barriers in Arabidopsis thaliana”. Genetics 203, pp. 1353–1367. DOI: https://doi.org/10.1534/genetics.115.183707. DOI: https://doi.org/10.1534/genetics.115.183707

Simon, M, S Durand, A Ricou, et al. (2022). “APOK3, a pollen killer antidote in Arabidopsis thaliana”. Genetics 221, iyac089. DOI: https://doi.org/10.1093/genetics/iyac089. DOI: https://doi.org/10.1093/genetics/iyac089

Simon, M, O Loudet, et al. (2008). “QTL mapping in five new large RIL populations of Arabidopsis thaliana genotyped with consensus SNP markers”. Genetics 178, pp. 2253–2264. DOI: https://doi.org/10.1534/genetics.107.083899. DOI: https://doi.org/10.1534/genetics.107.083899

Simon, M, A Simon, et al. (2012). “DNA fingerprinting and new tools for fine-scale discrimination of Arabidopsis thaliana accessions”. The Plant Journal 69, pp. 1094–1101. DOI: https://doi.org/10.1111/j.1365-313X.2011.04852.x. DOI: https://doi.org/10.1111/j.1365-313X.2011.04852.x

Tisné, S et al. (2013). “Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity”. The Plant Journal 74, pp. 534–544. DOI: https://doi.org/10.1111/tpj.12131. DOI: https://doi.org/10.1111/tpj.12131

Vongs, A et al. (1993). “Arabidopsis thaliana DNA methylation mutants”. Science 260, pp. 1926–1928. DOI: https://doi.org/10.1126/science.8316832. DOI: https://doi.org/10.1126/science.8316832

W Meinke, D et al. (1998). “Arabidopsis thaliana: a model plant for genome analysis”. Science 282, pp. 679–82. DOI: https://doi.org/10.1126/science.282.5389.662. DOI: https://doi.org/10.1126/science.282.5389.662

Wuest, S E and P A Niklaus (2018). “A plant biodiversity effect resolved to a single chromosomal region”. Nature ecology & evolution 2, pp. 1933–1939. DOI: https://doi.org/10.1038/s41559-018-0708-y. DOI: https://doi.org/10.1038/s41559-018-0708-y

Xue, Z et al. (2024). “Natural variation in response to combined water and nitrogen deficiencies in Arabidopsis”. The Plant Cell 36, pp. 3378–3398. DOI: https://doi.org/10.1093/plcell/koae173. DOI: https://doi.org/10.1093/plcell/koae173

Yaschenko, A E, J M Alonso, and A N Stepanova (2024). “Arabidopsis as a model for translational research”. The Plant Cell koae065. DOI: https://doi.org/10.1093/plcell/koae065. DOI: https://doi.org/10.1093/plcell/koae065

Zhang, Y et al. (2021). “Heterochromatin is a quantitative trait associated with spontaneous epiallele formation”. Nature communications 12, p. 6958. DOI: https://doi.org/10.1038/s41467-021-27320-6. DOI: https://doi.org/10.1038/s41467-021-27320-6