The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops – Conservation, exploitation and steps towards a bio-digital resource centre

Main Article Content

Stephan Weise
https://orcid.org/0000-0003-4031-9131
Frank R. Blattner
https://orcid.org/0000-0001-7731-7741
Andreas Börner
https://orcid.org/0000-0003-3301-9026
Klaus J. Dehmer
https://orcid.org/0000-0003-3735-5051
Marion Grübe
https://orcid.org/0000-0003-2220-1981
Dörte Harpke
https://orcid.org/0000-0003-1667-2912
Ulrike Lohwasser
https://orcid.org/0000-0002-3788-5258
Markus Oppermann
https://orcid.org/0000-0002-3370-3218
Nils Stein
https://orcid.org/0000-0003-3011-8731
Evelin Willner
https://orcid.org/0000-0002-4153-4418
Manuela Nagel
https://orcid.org/0000-0003-0396-0333

Abstract

Over more than 80 years, the collections of the German Federal Ex Situ Genebank for Agricultural and Horticultural Crops have grown to around 152,000 accessions of 3,000 species preserved at three locations: Gatersleben, Groß Lüsewitz and Malchow/Poel. More than 96% of the material is stored as desiccation-tolerant orthodox seeds according to the active–base–safety (A-B-S) replicate approach at -18°C. Almost 70,000 freshly regenerated safety replicates are stored in the Svalbard Global Seed Vault. However, 4% of the material (2,000 field, 3,000 in vitro and 2,500 cryopreserved accessions) can only be maintained vegetatively, as no or few seeds or no true-breeding seeds are available. Most of the accessions are provided via the standard material transfer agreement (SMTA) and more than 1.2 million samples have been distributed since the genebank was founded. To guarantee the identity of the living plant material, reference samples comprising about 450,000 voucher specimens, 110,000 seed and fruit samples and 57,000 cereal spikes are used for comparisons. Genebank workflows are supported by the Genebank Information System (GBIS), which also manages workflow-independent data to describe the genebank accessions by passport, phenotypic and taxonomic data, thus allowing users to make targeted selections of material. The genebank-related processes, including acquisition, preservation, regeneration, documentation and material distribution, are certified for quality management in accordance with ISO 9001. Nowadays, the genebank is undergoing a transformation process to become a bio-digital resource centre to improve utilization of the genetic resources in research and breeding to address future challenges.

 

 

Article Details

How to Cite
Weise, S., Blattner, F. R., Börner, A., Dehmer , K. J., Grübe , M., Harpke , D., Lohwasser , U., Oppermann , M., Stein , N., Willner , E. and Nagel, M. (2025) “The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops – Conservation, exploitation and steps towards a bio-digital resource centre”, Genetic Resources, (S2), pp. 91–105. doi: 10.46265/genresj.GYDY5145.
Section
Genebank report
References

Alercia, A, S Diulgheroff, and M Mackay (2015). FAO/Bioversity Multi-Crop Passport Descriptors V.2.1 (MCPD V.2.1). Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); Bioversity International. URL: https://hdl.handle.net/10568/69166.

Alercia, A, S Diulgheroff, and T Metz (2001). FAO/IPGRI Multi-Crop Passport Descriptors (MCPD). Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); International Plant Genetic Resources Instititute (IPGRI). URL: https://hdl.handle.net/10568/105205.

Alercia, A, F M López, et al. (2018). Digital Object Identifiers for food crops: descriptors and guidelines of the Global Information System. Rome, Italy: Food and Agriculture Organization of the United Nations. URL: http://www.fao.org/3/i8840en/I8840EN.pdf.

Anon (1953). “F. Die Abteilungen”. Die Kulturpflanze 1, pp. 26–44. DOI: https://doi.org/10.1007/BF02017486. DOI: https://doi.org/10.1007/BF02095606

Anon (1978). “Das Institut im Jahre 1977”. Die Kulturpflanze 26, pp. 392–422. DOI: https://doi.org/10.1007/BF02017486. DOI: https://doi.org/10.1007/BF02017486

Baranski, M (2013). Seed collection and plant genetic diversity, 1900-1979. Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia. URL: https://hdl.handle.net/10776/6468 (visited on 10/2024).

Baur, E (1914). “Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen für die Pflanzenzüchtung”. In: Jahrbuch der deutschen Landwirtschafts-Gesellschaft. 29, pp. 104–109.

Benson, E E (2000). “In vitro plant recalcitrance: An introduction”. In Vitro Cellular & Developmental Biology - Plant 36, pp. 141–148. DOI: https://doi.org/10.1007/s11627-000-0029-z. DOI: https://doi.org/10.1007/s11627-000-0029-z

Bioversity (2024). Bioversity Descriptors. URL: https://hdl.handle.net/10568/56589 (visited on 10/2024).

Dussert, S, F Engelmann, and M Noirot (2003). “Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections”. CryoLetters 24, pp. 149–160.

Ellis, R H and E H Roberts (1980). “Improved equations for the prediction of seed longevity”. Annals of Botany 45, pp. 13–30. DOI: https://doi.org/10.1093/oxfordjournals.aob.a085797. DOI: https://doi.org/10.1093/oxfordjournals.aob.a085797

Engels, J M M and L Visser (2003). A guide to effective management of germplasm collections. Rome, Italy: International Plant Genetic Resources Institute. URL: https://hdl.handle.net/10568/104369.

FAO (2014). Genebank Standards for Plant Genetic Resources for Food and Agriculture. Rome, Italy: Food and Agriculture Organization of the United Nations.

Garrity, G M et al. (2009). “Studies on monitoring and tracking genetic resources: An executive summary”. Standards in Genomic Sciences 1, pp. 78–86. DOI: https://doi.org/10.4056/sigs.1491. DOI: https://doi.org/10.4056/sigs.1491

González, M Y et al. (2018). “Unlocking historical phenotypic data from an ex situ collection to enhance the informed utilization of genetic resources of barley (Hordeum sp”. Theoretical and Applied Genetics 131, pp. 2009–2019. DOI: https://doi.org/10.1007/s00122-018-3129-z. DOI: https://doi.org/10.1007/s00122-018-3129-z

Grebenšˇcikov, I (1985). “Zur Variabilität des Rohproteingehalts im Gaterslebener Maissortiment”. Die Kulturpflanze 33, pp. 183–198. DOI: https://doi.org/10.1007/BF01997271. DOI: https://doi.org/10.1515/9783112730010-014

Grusak, M A and D Dellapenna (1999). “Improving the nutrient composition of plants to enhace human nutrition and health”. Annual Review of Plant Physiology and Plant Molecular Biology 50, pp. 133–161. DOI: https://doi.org/10.1146/annurev.arplant.50.1.133. DOI: https://doi.org/10.1146/annurev.arplant.50.1.133

Hammer, K (1998). Agrarbiodiversität und pflanzengenetische Ressourcen - Herausforderungen und Lösungsansätze. Schriften zu genetischen Ressourcen 10. Bonn, Germany: Zentralstelle für Agrardokumentation und -information (ZADI).

Hammer (2020). “Die Genbanken sind eine Notaufnahmeklinik und eine Arche Noah für das Überleben der Kulturpflanzenvielfalt”. In: Geschichte der Biogeographie. Ed. by K Porges and S Lux. Deutsche Gesellschaft für Geschichte und Theorie der Biologie, 22, pp. 111–140.

Hammer, K and A Diederichsen (2009). “Evolution, status and perspectives for landraces in Europe”. In: European landraces: On-farm conservation, management and use. Ed. by

M Veteläinen, V Negri, and N Maxted. Bioversity Technical Bulletin No. 15. url: https://hdl. handle.net/10568/106154. Rome, Italy: Bioversity International, pp. 23–44.

Hanelt, P (2001). Mansfeld’s encyclopedia of agricultural and horticultural crops: Except ornamentals. Berlin, Germany: Springer. DOI: https://doi.org/10.1007/978-3-540-30442-5

Hintum, T J L van and D L Visser (1995). “Duplication within and between germplasm collections”. Genetic Resources and Crop Evolution 42, pp. 135–145. DOI: https://doi.org/10.1007/BF02539517. DOI: https://doi.org/10.1007/BF02539517

Hoisington, D et al. (1999). “Plant genetic resources: What can they contribute toward increased crop productivity?” Proceedings of the National Academy of Sciences of the United States of America 96, pp. 5937–5943. DOI: https://doi.org/10.1073/pnas.96.11.5937. DOI: https://doi.org/10.1073/pnas.96.11.5937

Huaman, Z et al. (1977). Descriptors for the cultivated potato. Rome, Italy: International Board for Plant Genetic Resources (IBPGR). URL: https://hdl.handle.net/10568/72872.

I Vavilov, N (1926). The centers of origin of cultivated plants. (In Russ.) Leningrad: Institute of Applied Botany and Plant Breeding.

Keller, E R J and M Dreiling (2003). “Potato cryopreservation in Germany - Using the droplet method for the establishment of a new large collection”. Acta Horticulturae 623, pp. 193–199. DOI: https://doi.org/10.17660/ActaHortic.2003.623.20. DOI: https://doi.org/10.17660/ActaHortic.2003.623.20

Keller, E R J and C Kik (2018). “Allium Genetic Resources”. In: The Allium genomes. Compendium of Plant Genomes. Ed. by M Shigyo, A Khar, and M Abdelrahman. doi: https:// doi.org/10.1007/978-3-319-95825-5_3. Cham: Springer International Publishing, pp. 23–52. DOI: https://doi.org/10.1007/978-3-319-95825-5_3

Keller, E R J, A Senula, et al. (2014). “Fifteen years of cryopreservation in the IPK genebank - experience, conclusions and outlook”. Acta Horticulturae 1039, pp. 249–263. DOI: https://doi.org/10.17660/ActaHortic.2014.1039.32. DOI: https://doi.org/10.17660/ActaHortic.2014.1039.32

Kotni, P et al. (2023). “EURISCO update 2023: the European Search Catalogue for Plant Genetic Resources, a pillar for documentation of genebank material”. Nucleic Acids Research 51, pp. D1465–D1469. DOI: https://doi.org/10.1093/nar/gkac852. DOI: https://doi.org/10.1093/nar/gkac852

Krajewski, P et al. (2015). “Towards recommendations for metadata and data handling in plant phenotyping”. Journal of Experimental Botany 66, pp. 5417–5427. DOI: https://doi.org/10.1093/jxb/erv271. DOI: https://doi.org/10.1093/jxb/erv271

Leprince, O et al. (2017). “Late seed maturation: Drying without dying”. Journal of Experimental Botany 68, pp. 827–841. DOI: https://doi.org/10.1093/jxb/erw363. DOI: https://doi.org/10.1093/jxb/erw363

Lerbret, A et al. (2011). “Slowing down of water dynamics in disaccharide aqueous solutions”. Journal of Non-Crystalline Solids 357, pp. 695–699. DOI: https://doi.org/10.1016/j.jnoncrysol.2010.05.092. DOI: https://doi.org/10.1016/j.jnoncrysol.2010.05.092

Mascher, M et al. (2019). “Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding”. Nature Genetics 51, pp. 1076–1081. DOI: https://doi.org/10.1038/s41588-019-0443-6. DOI: https://doi.org/10.1038/s41588-019-0443-6

McKey, D et al. (2010). “The evolutionary ecology of clonally propagated domesticated plants”. New Phytologist 186, pp. 318–332. DOI: https://doi.org/10.1111/j.1469-8137.2010.03210.x. DOI: https://doi.org/10.1111/j.1469-8137.2010.03210.x

Milner, S G et al. (2019). “Genebank genomics highlights the diversity of a global barley collection”. Nature Genetics 51, pp. 319–326. DOI: https://doi.org/10.1038/s41588-018-0266-x. DOI: https://doi.org/10.1038/s41588-018-0266-x

Müntz, K and U Wobus (2013). Das Institut Gatersleben und seine Geschichte - Genetik und Kulturpflanzenforschung in drei politischen Systemen. Berlin, Heidelberg: Springer Spektrum. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x. DOI: https://doi.org/10.1007/978-3-642-28648-3

Murashige, T and F Skoog (1962). “A revised medium for rapid growth and bio assays with tobacco tissue cultures”. Physiologia Plantarum 15, pp. 473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nagel, M, E Dulloo, et al. (2022). Global strategy for the conservation of potato. Bonn: Global Crop Diversity Trust. DOI: https://doi.org/10.5447/ipk/2022/29.

Nagel, M, I Kranner, et al. (2015). “Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley”. Plant Cell and Environment 38, pp. 1011–1022. DOI: https://doi.org/10.1111/pce.12474. DOI: https://doi.org/10.1111/pce.12474

Nagel, M, V Pence, et al. (2024). “Plant cryopreservation: Principles, applications, and challenges of banking plant diversity at ultralow temperatures”. Annual Review of Plant Biology 75, pp. 797–824. DOI: http://dx.doi.org/10.1146/annurev-arplant-070623-103551. DOI: https://doi.org/10.1146/annurev-arplant-070623-103551

O Berkner, M et al. (2024). “Genomic prediction reveals unexplored variation in grain protein and lysine content across a vast winter wheat genebank collection”. Frontiers in Plant Science 14, p. 1270298. DOI: https://doi.org/10.3389/fpls.2023.1270298. DOI: https://doi.org/10.3389/fpls.2023.1270298

O Lehmann, C (1963). “Zwanzig Jahre Sortiment des Institutes für Kulturpflanzenforschung”. DOI: https://doi.org/10.1007/BF02136119

Die Kulturpflanze 11, pp. 281–294. DOI: https://doi.org/10.1007/BF02136119. O Lehmann, C and R Mansfeld (1957). “Zur Technik der Sortimentserhaltung”. Die

Kulturpflanze 5, pp. 108–138. DOI: https://doi.org/10.1007/BF02095492. DOI: https://doi.org/10.1007/BF02095492

O Lehmann, C, A Rudolph, et al. (1978). “Eiweißuntersuchungen am Getreide- und Leguminosen-Sortiment Gatersleben”. Die Kulturpflanze 26, pp. 133–161. DOI: https://doi.org/10.1007/BF02146158. DOI: https://doi.org/10.1007/BF02146158

O Metzger, J and U Bornscheuer (2006). “Lipids as renewable resources: Current state of chemical and biotechnological conversion and diversification”. Applied Microbiology and Biotechnology 71, pp. 13–22. DOI: https://doi.org/10.1007/s00253-006-0335-4. DOI: https://doi.org/10.1007/s00253-006-0335-4

Oppermann, M et al. (2015). “GBIS: The information system of the German Genebank”. Database 2015, bav021. DOI: https://doi.org/10.1093/database/bav021. DOI: https://doi.org/10.1093/database/bav021

Panis, B, M Nagel, and I Van Den Houwe (2020). “Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen”. Plants 9(12), p. 1634. DOI: https://doi.org/10.3390/plants9121634. DOI: https://doi.org/10.3390/plants9121634

Papoutsoglou, E A et al. (2020). “Enabling reusability of plant phenomic datasets with MIAPPE 1.1”. New Phytologist 227, pp. 260–273. DOI: https://doi.org/10.1111/nph.16544. DOI: https://doi.org/10.1111/nph.16544

Philipp, N et al. (2018). “Leveraging the use of historical data gathered during seed regeneration of an ex situ genebank collection of wheat”. Frontiers in Plant Science 9, p. 609. DOI: https://doi.org/10.3389/fpls.2018.00609. DOI: https://doi.org/10.3389/fpls.2018.00609

Qian, B et al. (2018). “Simulated canola yield responses to climate change and adaptation in Canada”. Agronomy Journal 110, pp. 133–146. DOI: https://doi.org/10.2134/agronj2017.02.0076. DOI: https://doi.org/10.2134/agronj2017.02.0076

Röckel, F et al. (2022). “PhenoApp: A mobile tool for plant phenotyping to record field and greenhouse observations”. F1000Research 11(12). DOI: https://doi.org/10.12688/f1000research.74239.2. DOI: https://doi.org/10.12688/f1000research.74239.1

Senula, A and M Nagel (2021). “Cryopreservation of plant shoot tips of potato, mint, garlic, and shallot using Plant Vitrification Solution 3”. In: Cryopreservation and Freeze-Drying Protocols. Ed. by W F Wolkers and H Oldenhof. doi: https://doi.org/10.1007/978-1-0716-0 783-1_35. New York: Humana, pp. 647–661. DOI: https://doi.org/10.1007/978-1-0716-0783-1_35

Shaw, P D et al. (2023). “Database solutions for genebanks and germplasm collections”. In: Plant Genetic Resources for the 21st Century: The OMICS Era. Ed. by K Ghamkhar, DOI: https://doi.org/10.1201/9781003302957-19

W M Williams, and A H D Brown. doi: https://doi.org/10.1201/9781003302957. Palm Bay, Florida, USA: Apple Academic Press, pp. 285–309.

Tanksley, S D and S R Mccouch (1997). “Seed banks and molecular maps: Unlocking genetic potential from the wild”. Science 277, pp. 1063–1066. DOI: https://doi.org/10.1126/science.277.5329.1063. DOI: https://doi.org/10.1126/science.277.5329.1063

Tilman, D, J Hill, and C Lehman (2006). “Carbon-negative biofuels from low-input high-diversity grassland biomass”. Science 314(5805), pp. 1598–1600. DOI: https://doi.org/10.1126/science.1133306. DOI: https://doi.org/10.1126/science.1133306

Towey, J J, A K Soper, and L Dougan (2012). “Molecular insight into the hydrogen bonding and micro-segregation of a cryoprotectant molecule”. The Journal of Physical Chemistry B 116, pp. 13898–13904. DOI: https://doi.org/10.1021/jp3093034. DOI: https://doi.org/10.1021/jp3093034

Volk, G M et al. (2017). “Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks”. Genetic Resources and Crop Evolution 64, pp. 1613–1622. DOI: https://doi.org/10.1007/s10722-016-0460-6. DOI: https://doi.org/10.1007/s10722-016-0460-6

W Schulthess, A et al. (2022). “Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement”. Nature Genetics 54, pp. 1544–1552. DOI: https://doi.org/10.1038/s41588-022-01189-7. DOI: https://doi.org/10.1038/s41588-022-01189-7

Weise, S, R Hoekstra, et al. (2023). “Analysis of gaps in rapeseed (Brassica napus L.) collections in European genebanks”. Frontiers in Plant Science 14, p. 1244467. DOI: https://doi.org/10.3389/fpls.2023.1244467. DOI: https://doi.org/10.3389/fpls.2023.1244467

Weise, S, M Oppermann, et al. (2017). “EURISCO: The European search catalogue for plant genetic resources”. Nucleic Acids Research 45, pp. D1003–D1008. DOI: https://doi.org/10.1093/nar/gkw755. DOI: https://doi.org/10.1093/nar/gkw755

Weise, S, U Lohwasser, and M Oppermann (2020). “Document or lose it - On the importance of information management for genetic resources conservation in genebanks”. Plants 9(1050). DOI: https://doi.org/10.3390/plants9081050. DOI: https://doi.org/10.3390/plants9081050

Wiews (2025). World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture (WIEWS). URL: http://www.fao.org/wiews/en/.

Wilkinson, M D et al. (2016). “The FAIR guiding principles for scientific data management and stewardship”. Scientific Data 3, p. 160018. DOI: https://doi.org/10.1038/sdata.2016.18. DOI: https://doi.org/10.1038/sdata.2016.18