A public mid-density genotyping platform for alfalfa (Medicago sativa L.)

Main Article Content

Dongyan Zhao
https://orcid.org/0000-0002-2080-8416
Katherine Mejia-Guerra
https://orcid.org/0000-0002-2791-182X
Marcelo Mollinari
https://orcid.org/0000-0002-7001-8498
Deborah Samac
https://orcid.org/0000-0002-1847-0508
Brian Irish
https://orcid.org/0000-0002-4954-6392
Kasia Heller-Uszynska
https://orcid.org/0009-0009-5536-8949
Craig Beil
https://orcid.org/0000-0002-1756-9987
Moira Sheehan
https://orcid.org/0000-0002-3400-2165

Abstract

Small public breeding programmes have many barriers to adopting technology, particularly creating and using genetic marker panels for genomic-based decisions in selection. Here we report the creation of a DArTag panel of 3,000 loci distributed across the alfalfa (Medicago sativa L.) genome for use in molecular breeding and genomic insight. The creation of this marker panel brings cost-effective and rapid genotyping capabilities to alfalfa breeding programmes. The open access provided by this platform will allow genetic data sets generated on the marker panel to be compared and joined across projects, institutions and countries. This genotyping resource has the power to make routine genotyping a reality for any breeder of alfalfa.

 

 

Article Details

How to Cite
Zhao, D., Mejia-Guerra, K. M., Mollinari, M., Samac, D., Irish, B., Heller-Uszynska, K., Beil, C. T. and Sheehan, M. J. (2023) “A public mid-density genotyping platform for alfalfa (Medicago sativa L.)”, Genetic Resources, 4(8), pp. 55–63. doi: 10.46265/genresj.EMOR6509.
Section
Short Communications
References

Blyton, M D J et al. (2023). “A new genetic method for diet determination from faeces that provides species level resolution in the koala”. bioRxiv 2023.02.12.528172. DOI: https://doi.org/10.1101/2023.02.12.528172. DOI: https://doi.org/10.1101/2023.02.12.528172

Bolger, A M, M Lohse, and B Usadel (2014). “Trimmomatic: a flexible trimmer for Illumina sequence data”. Bioinform 30(15), pp. 2144–2120. DOI: https://doi.org/10.1093/bioinformatics/btu170. DOI: https://doi.org/10.1093/bioinformatics/btu170

Chen, H et al. (2020). “Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa”. Nature Comm 11, pp. 1–11. DOI: https://doi.org/10.1038/s41467-020-16338-x. DOI: https://doi.org/10.1038/s41467-020-16338-x

Darrier, B et al. (2019). “A Comparison of Mainstream Genotyping Platforms for the Evaluation and Use of Barley Genetic Resources”. Front Plant Sci 10, pp. 1–14. DOI: https://doi.org/10.3389/fpls.2019.00544. DOI: https://doi.org/10.3389/fpls.2019.00544

Eathington, S R et al. (2007). “Molecular markers in a commercial breeding program”. Crop Sci 47, pp. 154–163. DOI: https://doi.org/10.2135/cropsci2007.04.0015IPBS. DOI: https://doi.org/10.2135/cropsci2007.04.0015IPBS

Fernandez, A L et al. (2019). Alfalfa, Wildlife, and the Environment. St. Paul, MN: National Alfalfa and Forage Alliance.

Ferrão, L F V et al. (2021). “Genomic Selection in an Outcrossing Autotetraploid Fruit Crop: Lessons From Blueberry Breeding”. Front Plant Sci 12, pp. 1–13. DOI: https://doi.org/10.3389/fpls.2021.676326. DOI: https://doi.org/10.3389/fpls.2021.676326

Feurerstein, U, A H D Brown, and J J Burdon (1990). “Linkage of Rust Resistance Genes from Wild Barley (Hordeum spotaneum) with Isozyme Markers”. Plant Breeding 104, pp. 318–324. DOI: https://doi.org/10.1111/j.1439-0523.1990.tb00442.x. DOI: https://doi.org/10.1111/j.1439-0523.1990.tb00442.x

Gerard, D et al. (2018). “Genotyping Polyploids from Messy Sequencing Data”. Genetics 210(3), pp. 789–807. DOI: https://doi.org/10.1534/genetics.118.301468. DOI: https://doi.org/10.1534/genetics.118.301468

Hasan, N et al. (2021). “Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes”. J Genet Eng Biotech 19, pp. 1–26. DOI: https://doi.org/10.1186/s43141-021-00231-1. DOI: https://doi.org/10.1186/s43141-021-00231-1

Hawkins, C and L - X Yu (2018). “Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection”. The Crop Journal 6, pp. 565–575. DOI: https://doi.org/10.1016/j.cj.2018.01.006. DOI: https://doi.org/10.1016/j.cj.2018.01.006

Heffner, E L, M E Sorrells, and J - L Jannink (2009). “Genomic selection for crop improvement”. Crop Sci 49, pp. 1–12. DOI: https://doi.org/10.2135/cropsci2008.08.0512. DOI: https://doi.org/10.2135/cropsci2008.08.0512

Helentjaris, T et al. (1985). “Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding”. Plant Mol Biol 5, pp. 109–118. DOI: https://doi.org/10.1007/BF00020093. DOI: https://doi.org/10.1007/BF00020093

Krishnakumar, S et al. (2008). “A comprehensive assay for targeted multiplex amplification of human DNA sequences”. PNAS 105(27), pp. 9296–9301. DOI: https://doi.org/10.1073/pnas.0803240105. DOI: https://doi.org/10.1073/pnas.0803240105

Li, H (2012). “Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly”. Bioinform 28(14), pp. 1838–1882. DOI: https://doi.org/10.1093/bioinformatics/bts280. DOI: https://doi.org/10.1093/bioinformatics/bts280

Li, H (2013). “Aligning sequence reads, clones sequences and assembly contigs with BWA-MEM”. arXiv 1303.3997. DOI: https://doi.org/10.48550/arXiv.1303.3997.

Lorenzana, R and R Bernardo (2009). “Accuracy of genotypic value predictions for marker-based selection in biparental plant populations”. Theor Appl Genet 120, pp. 151–161. DOI: https://doi.org/10.1007/s00122-009-1166-3. DOI: https://doi.org/10.1007/s00122-009-1166-3

Mejia-Guerra, M K, D Zhao, and M J Sheehan (2021). “Genomic Resources for Breeding in Alfalfa: Availability, Utility, and Adoption”. In: The Alfalfa Genome, Compendium of Plant Genomes. Ed. by L X Yu and C Kole. Cham: Springer, pp. 177–189. DOI: https://doi.org/10.1007/978-3-030-74466-3_11. DOI: https://doi.org/10.1007/978-3-030-74466-3_11

Milner, S G et al. (2019). “Genebank genomics reveals the diversity of a global barley collection”. Nat. Genet 51, pp. 319–326. DOI: https://doi.org/10.1038/s41588-018-0266-x. DOI: https://doi.org/10.1038/s41588-018-0266-x

Mollinari, M and A A F Garcia (2019). “Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models”. Genes, Genomes, Genetics 3(10), pp. 3297–3314. DOI: https://doi.org/10.1534/g3.119.400378. DOI: https://doi.org/10.1534/g3.119.400378

Mollinari, M, B A Olukolu, et al. (2020). “Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping”. Genes, Genomes, Genetics 3(1), pp. 281–292. DOI: https://doi.org/10.1534/g3.119.400620. DOI: https://doi.org/10.1534/g3.119.400620

Putnam, D and E Meccage (2022). “Profitable alfalfa production sustains the environment”. In: Proceedings, 2022 World Alfalfa Congress, 14-17 November 2022, San Diego, CA. URL: https://alfalfasymposium.ucdavis.edu/+symposium/proceedings/2022/Articles/Daniel-Putnam-2022-Profitable-Alfalfa-Production-Sustains-The-Environment.pdf.

Tanksley, S D (1983). “Molecular markers in plant breeding”. Plant Mol Biol Rep 1, pp. 3–8. DOI: https://doi.org/10.1101/2023.02.12.528172. DOI: https://doi.org/10.1007/BF02680255

Telfer, E et al. (2019). “A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata”. PLoS One 14(9), pp. 222640–222640. DOI: https://doi.org/10.1371/journal.pone.0222640. DOI: https://doi.org/10.1371/journal.pone.0222640

Undersander, D (2021). “Economic importance, practical limitations to production, management, and breeding targets of alfalfa”. In: The Alfalfa Genome, Compendium of Plant Genomes. Ed. by L X Yu and C Kole. Cham: Springer, pp. 1–11. DOI: https://doi.org/10.1007/978-3-030-74466-3_1. DOI: https://doi.org/10.1007/978-3-030-74466-3_1

Wang, N et al. (2020). “Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding”. Sci Rep 10. DOI: https://doi.org/10.1038/s41598-020-73321-8. DOI: https://doi.org/10.1038/s41598-020-73321-8