Genetic diversity and intraspecific mitochondrial DNA variations in the Georgian Mountain breed of Bos taurus reveal admixture, introgression and potential parallel vs. convergent evolution patterns
Main Article Content
Abstract
This study elucidates the haplotype diversity and mechanisms of evolutionary divergence for a broad population of the Georgian Mountain breed (GMB) of Bos taurus, using the sequencing and analysis of its mitochondrial DNA (mtDNA). In the evolutionary analyses, sequences of the targeted mtDNA region, involving the D-loop, CYTB, tRNA-Thr, and tRNA-Pro encoding genetic loci were analyzed using MEGA11, DnaSP, and SplitsTree software packages. A total of 25 haplotypes were determined among 82 individuals of GMB, belonging predominantly to the haplogroups T (T3, T1, T2, T4) or Q (Q1). Ten singleton haplotypes could also be determined in the GMB population. In the maximum likelihood evolutionary analysis, the singleton haplotype SNGT-9 appeared to be most closely related to the Bos indicus sub-haplogroup I1a. The haplotype diversity (0.997), nucleotide diversity (0.00636) and the overall mean distance within a population (0.01) calculated for GMB were greater as compared to the respective estimates (0.930, 0.00482 and 0.00) determined for its closest cattle relatives globally, suggesting stronger selection. It is suggested that the GMB diversity has been shaped by both parallel and convergent evolution, as well as by possible introgression, while pinpointing this breed’s ancient origin collectively.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the articles published in Genetic Resources and grant the journal right of first publication with open access. All articles published in Genetic Resource are licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0) that allows others to download, share and adapt the work for commercial and non-commercial purposes as long as proper attribution to the original article is given. Genetic Resources permits and encourages authors to post items submitted to the journal (including the publisher's final layout) on personal websites or institutional repositories after acceptance and/or publication, while providing bibliographic details that credit their publication in Genetic Resources.
Achilli, A, S Bonfiglio, et al. (2009). “The multifaceted origin of taurine cattle reflected by the mitochondrial genome”. PLoS One 4(6). DOI: https://doi.org/10.1371/journal.pone.0005753. DOI: https://doi.org/10.1371/journal.pone.0005753
Achilli, A, A Olivieri, M Pellecchia, et al. (2008). “Mitochondrial genomes of extinct aurochs survive in domestic cattle”. Current Biology 18(4), pp. 18302915–18302915. DOI: https://doi.org/10.1016/j.cub.2008.01.019. DOI: https://doi.org/10.1016/j.cub.2008.01.019
Bonfiglio, S et al. (2010). “The enigmatic origin of bovine mtDNA haplogroup R: sporadic interbreeding or an independent event of Bos primigenius domestication in Italy?” PLoS One 5(12). DOI: https://doi.org/10.1371/journal.pone.0015760.PMID:21209945. DOI: https://doi.org/10.1371/journal.pone.0015760
Bruen, T C, H Philippe, and D Bryant (2006). “A simple and robust statistical test for detecting the presence of recombination”. Genetics 172(4). DOI: https://doi.org/10.1534/genetics.105.048975. DOI: https://doi.org/10.1534/genetics.105.048975
Carvajal-Carmona, L G et al. (2003). “Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus)”. Genetics 165(3), pp. 1457–1463. DOI: https://doi.org/10.1093/genetics/165.3.1457. DOI: https://doi.org/10.1093/genetics/165.3.1457
Chen, N et al. (2018). “Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia”. Nat Commun 9(1), p. 2337. DOI: https://doi.org/10.1038/s41467-018-04737-0. DOI: https://doi.org/10.1038/s41467-018-04737-0
Chen, S et al. (2010). “Zebu cattle are an exclusive legacy of the South Asia neolithic”. Mol Biol Evol 27(1), pp. 1–6. DOI: https://doi.org/10.1093/molbev/msp213. DOI: https://doi.org/10.1093/molbev/msp213
Clutton-Brock, J (1989). The walking larder: patterns of domestication, pastoralism and predation. London: Unwin Hyamn, p. 368.
Colominas, L et al. (2015). “Detecting the T1 cattle haplogroup in the Iberian Peninsula from Neolithic to medieval times: new clues to continuous cattle migration through time”. J Archeol Sci 59, pp. 110–117. DOI: https://doi.org/10.1016/j.jas.2015.04.014
Cubric-Curik, V et al. (2021). “Large-scale mitogenome sequencing reveals consecutive expansions of domestic taurine cattle and supports sporadic aurochs introgression”. Evol Appl 15(4), pp. 663–678. DOI: https://doi.org/10.1111/eva.13315. DOI: https://doi.org/10.1111/eva.13315
Edwards, C J et al. (2007). “Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs”. Proc Biol Sci 274(1616), pp. 1377–1385. DOI: https://doi.org/10.1098/rspb.2007.0020. DOI: https://doi.org/10.1098/rspb.2007.0020
Elayadeth-Meethal, M et al. (2018). “Size does matter: Parallel evolution of adaptive thermal tolerance and body size facilitates adaptation to climate change in domestic cattle”. Ecology and Evolution 8(21), pp. 6238145–6238145. DOI: https://doi.org/10.1002/ece3.4550. DOI: https://doi.org/10.1002/ece3.4550
Gogniashvili, M, Y Matsuoka, and T Beridze (2021). “Genetic Analysis of Hexaploid Wheat (Triticum aestivum L.) Using the Complete Sequencing of Chloroplast DNA and Haplotype Analysis of the Wknox1 Gene”. Int J Mol Sci 22(23). DOI: https://doi.org/10.3390/ijms222312723. DOI: https://doi.org/10.3390/ijms222312723
Groves, P and G F Shields (1997). “Cytochrome B sequences suggest convergent evolution of the Asian takin and Arctic muskox”. Mol Phylogenet Evol 8(3), pp. 363–374. DOI: https://doi.org/10.1006/mpev.1997.0423. DOI: https://doi.org/10.1006/mpev.1997.0423
Ieri, F et al. (2021). “Analysis of aroma and polyphenolic compounds in Saperavi red wine vinified in Qvevri”. Food Sci Nutr 9(12), pp. 6492–6500. DOI: https://doi.org/10.1002/fsn3.2556. DOI: https://doi.org/10.1002/fsn3.2556
Kikkawa, Y et al. (2003). “Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattle”. Anim Genet 34(2), pp. 96–101. DOI: https://doi.org/10.1046/j.1365-2052.2003.00956.x. DOI: https://doi.org/10.1046/j.1365-2052.2003.00956.x
Kim, J-H et al. (2013). “mtDNA Diversity and Phylogenetic State of Korean Cattle Breed, Chikso”. Asian-Australasian Journal of Animal Sciences 26(2), pp. 163–170. DOI: https://doi.org/10.5713/ajas.2012.12499. DOI: https://doi.org/10.5713/ajas.2012.12499
Kim, K et al. (2020). “The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism”. Nat Genet 52(10), pp. 32989325–32989325. DOI: https://doi.org/10.1038/s41588-020-0694-2. DOI: https://doi.org/10.1038/s41588-020-0694-2
Kimura, M (1980). “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences”. J Mol Evol 16(2), pp. 111–131. DOI: https://doi.org/10.1007/BF01731581. DOI: https://doi.org/10.1007/BF01731581
Kinoshita, A et al. (2018). “Inter-individual variation in adaptive capacity at onset of lactation: Linking metabolic phenotype with mitochondrial DNA haplotype in Holstein dairy cows. Sci Rep”. Scientific Reports 8(1), p. 15439. DOI: https://doi.org/10.1038/s41598-018-33853-6. DOI: https://doi.org/10.1038/s41598-018-33853-6
Kunelauri, N, M Gogniashvili, V Tabidze, G Basiladze, and T Beridze (2019). “Georgian cattle, sheep, goats: are they of Near-Eastern origins? Mitochondrial DNA B Resour”. Mitochondrial DNA Part B 4(2), pp. 4006–4009. DOI: https://doi.org/10.1080/23802359.2019.1688695. DOI: https://doi.org/10.1080/23802359.2019.1688695
Kunelauri, N, M Gogniashvili, V Tabidze, G Basiladze, I Cardinali, et al. (2022). “The first complete mitogenomes and phylogeny of Georgian Mountain Cattle”. Mitochondrial DNA Part B 7(8), pp. 1531–1533. DOI: https://doi.org/10.1080/23802359.2022.2110531. DOI: https://doi.org/10.1080/23802359.2022.2110531
Kvavadze, E et al. (2007). “The first find in southern Georgia of fossil honey from the Bronze Age, based on palynological data”. Vegetation History and Archaeobotany 16(5), pp. 399–404. URL: http://www.jstor.org/stable/23419222. DOI: https://doi.org/10.1007/s00334-006-0067-5
Li, R et al. (2013). “Paternal origins of Chinese cattle”. Anim Genet 44(4), pp. 446–449. DOI: https://doi.org/10.1111/age.12022. DOI: https://doi.org/10.1111/age.12022
Loftus, R T et al. (1994). “Evidence for two independent domestications of cattle”. Proceedings of the National Academy of Sciences 91(7), pp. 2757–2761. DOI: https://doi.org/10.1073/pnas.91.7.2757. DOI: https://doi.org/10.1073/pnas.91.7.2757
Lordkipanidze, D et al. (2013). “A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo”. Science 18(342), pp. 326–331. DOI: https://doi.org/10.1126/science.1238484. DOI: https://doi.org/10.1126/science.1238484
Mitchell, D et al. (2018). “Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change”. J Anim Ecol 87(4), pp. 29479693–29479693. DOI: https://doi.org/10.1111/1365-2656. DOI: https://doi.org/10.1111/1365-2656.12818
Olivieri, A et al. (2015). “Mitogenomes from Egyptian Cattle Breeds: New Clues on the Origin of Haplogroup Q and the Early Spread of Bos taurus from the Near East”. PLoS One 10(10). DOI: https://doi.org/10.1371/journal.pone.0141170. DOI: https://doi.org/10.1371/journal.pone.0141170
Pacifici, M et al. (2017). “Species’ traits influenced their response to recent climate change”. Nature Climate Change 7(3). DOI: https://doi.org/10.1002/ece3.4550. DOI: https://doi.org/10.1038/nclimate3223
Rozas, J et al. (2001). “DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure”. Genetics 158(3). DOI: https://doi.org/10.1093/genetics/158.3.1147. DOI: https://doi.org/10.1093/genetics/158.3.1147
Schwartz, J H, I Tattersall, and Chi Z (2014). “Comment on "A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo"”. Science 344(6182). DOI: https://doi.org/10.1126/science.1250056. DOI: https://doi.org/10.1126/science.1250056
Stock, F et al. (2009). “Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations”. Anim Genet 40(5), pp. 694–700. DOI: https://doi.org/10.1111/j.1365-2052.2009.01905.x. DOI: https://doi.org/10.1111/j.1365-2052.2009.01905.x
Tamura, K and M Nei (1993). “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees”. Mol Biol Evol 10(3), pp. 512–538. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040023. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040023
Tamura, K, M Nei, and S Kumar (2004). “Prospects for inferring very large phylogenies by using the neighbor-joining method”. Proc Natl Acad Sci 101(30), pp. 11030–11035. DOI: https://doi.org/10.1073/pnas.0404206101. DOI: https://doi.org/10.1073/pnas.0404206101
Tarekegn, G M et al. (2018). “Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics”. Asian-Australasian Journal of Animal Sciences 31(9), pp. 1393–1400. DOI: https://doi.org/10.5713/ajas.17.0596. DOI: https://doi.org/10.5713/ajas.17.0596
Tibayrenc, M and F J Ayala (2017). “Trypanosoma cruzi and the model of predominant clonal evolution”. In: American Trypanosomiasis Chagas Disease. Ed. by J Telleria and M Tibayrenc. Elsevier, pp. 475–495. DOI: https://doi.org/10.1016/B978-0-12-801029-7.00021-6. DOI: https://doi.org/10.1016/B978-0-12-801029-7.00021-6
Troy, C S et al. (2001). “Genetic evidence for Near-Eastern origins of European cattle”. Nature 26(410), pp. 1088–1091. DOI: https://doi.org/10.1038/35074088. DOI: https://doi.org/10.1038/35074088
Xia, X - T et al. (2021). “Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia”. Heredity (Edinb) 126(6), pp. 8178343–8178343. DOI: https://doi.org/10.1038/s41437-021-00428-7. DOI: https://doi.org/10.1038/s41437-021-00428-7
Xia, X et al. (2019). “Mitogenome Diversity and Maternal Origins of Guangxi Cattle Breeds”. Animals 10(1). DOI: https://doi.org/10.3390/ani10010019. DOI: https://doi.org/10.3390/ani10010019
Zeyland, J et al. (2012). “Tracking of wisent-bison-yak mitochondrial evolution”. J Appl Genet, 53(3), pp. 317–322. DOI: https://doi.org/10.1007/s13353-012-0090-4. DOI: https://doi.org/10.1007/s13353-012-0090-4