Evaluating agromorphological traits of Greek wheat landraces and exploring their potential for bread and pasta making based on seed physical properties

Main Article Content

Styliani Protonotariou
https://orcid.org/0000-0002-0925-7342
Ricos Thanopoulos
https://orcid.org/0009-0002-6935-0474
Anastasios Katsileros
https://orcid.org/0009-0008-6973-755X
Penelope J. Bebeli
https://orcid.org/0000-0001-6740-9220
Ioanna Mandala

Abstract

Physical and morphological characteristics of Greek wheat landrace and cultivar seeds were evaluated, aiming to assess their bread- and pasta-making quality. Furthermore, the plant agromorphological traits of wheat landraces and cultivars were measured and correlated with seed physical properties. Fifteen Triticum spp. accessions, out of which four cultivars (two Triticum aestivum and two T. durum), nine landraces (two T. durum, five T. aestivum, one T. dicoccum and one T. polonicum) and two T. durum of unknown status were studied. Seventeen morphological plant and seed traits were measured based on UPOV descriptors. Ear emergence was earlier in cultivars than in landraces. The plant weight of the landraces was, in some cases, almost twice the cultivars’. Seed firmness (62.96–194.85N) was positively correlated with thousand kernel weight and volume (0.840 and 0.791, P < 0.05, respectively). Based on the agromorphological traits, cluster analysis clearly separated the species and the cultivars from the landraces, and the unknown status accessions were grouped with the cultivars. Cluster analysis with all measured traits set the wheat accessions in the following distinct groups: (1) T. durum cultivars including the unknown status accessions, (2) T. aestivum cultivars, and (3) T. aestivum and T. durum landraces. T. polonicum and T. dicoccum each formed a separate group. Seed physical properties of the analyzed Greek landraces indicated their suitability for bread and/or pasta making.

 

 

Article Details

How to Cite
Protonotariou, S., Thanopoulos, R., Katsileros, A., Bebeli , P. and Mandala, I. (2023) “Evaluating agromorphological traits of Greek wheat landraces and exploring their potential for bread and pasta making based on seed physical properties”, Genetic Resources, 4(8), pp. 37–54. doi: 10.46265/genresj.HFWZ5263.
Section
Original Articles
References

Abdipour, M et al. (2016). “Association between Grain Size and Shape and Quality Traits, and Path Analysis of Thousand Grain Weight in Iranian Bread Wheat Landraces from Different Geographic Regions”. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44(1), pp. 228–236. DOI: https://doi.org/10.15835/nbha44110256. DOI: https://doi.org/10.15835/nbha44110256

Acquaah, G (2012). Principles of Plant Genetics and Breeding. Hoboken, NJ, Wiley. DOI: https://doi.org/10.1002/9781118313718. DOI: https://doi.org/10.1002/9781118313718

Ayadi, S et al. (2020). “Nitrogen assimilation under different nitrate nutrition in Tunisian durum wheat landraces and improved genotypes”. Plant Biosystems 154(6), pp. 924–934. DOI: https://doi.org/10.1080/11263504.2020.1722274. DOI: https://doi.org/10.1080/11263504.2020.1722274

Bien´kowska, T, E Suchowilska, and M Wiwart (2020). “Triticum polonicum L. as promising source material for breeding new wheat cultivars”. Journal of Elementology 25(1), pp. 237–248. DOI: https://doi.org/10.5601/JELEM.2019.24.2.1873. DOI: https://doi.org/10.5601/jelem.2019.24.2.1873

Bilgrami, S S et al. (2020). “Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study”. Scientific Reports 10(1). DOI: https://doi.org/10.1038/s41598-020-69442-9. DOI: https://doi.org/10.1038/s41598-020-69442-9

Boukid, F et al. (2018). “Insights into a century of breeding of durum wheat in Tunisia: The properties of flours and starches isolated from landraces, old and modern genotypes”. LWT 97, pp. 743–751. DOI: https://doi.org/10.1016/J.LWT.2018.08.014. DOI: https://doi.org/10.1016/j.lwt.2018.08.014

Brush, S B (1995). “In Situ Conservation of Landraces in Centers of Crop Diversity”. Crop Science 35(2), pp. 346–346. DOI: https://doi.org/10.2135/cropsci1995.0011183X003500020009x. DOI: https://doi.org/10.2135/cropsci1995.0011183X003500020009x

Butkovskaya, L K and N S Kozulina (2021). “Sowing time and seeding rate in the new wheat varieties cultivation for seeds”. IOP Conference Series: Earth and Environmental Science 839(4), p. 042012. DOI: https://doi.org/10.1088/1755-1315/839/4/042012. DOI: https://doi.org/10.1088/1755-1315/839/4/042012

Campbell, K G et al. (1999). “Quantitative trait loci associated with kernel traits in a soft x hard wheat cross”. Crop Science 39(4), pp. 1184–1195. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900040039x. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900040039x

Carr, R L (1965). “Evaluating flow properties of solids”. Chemical Engineering 18, pp. 163–168. DOI: https://ci.nii.ac.jp/naid/10016048504. DOI: https://doi.org/10.1001/archopht.1965.00970040165007

Carvalho, M A A P et al. (2019). “Agrodiversidade e a Agricultura na Madeira”. Revista de Ciências Agrárias 42(3), pp. 575–605. DOI: https://doi.org/10.19084/rca.16658.

Casañas, F et al. (2017). “Toward an Evolved Concept of Landrace”. Frontiers in Plant Science, pp. 145–145. DOI: https://doi.org/10.3389/fpls.2017.00145. DOI: https://doi.org/10.3389/fpls.2017.00145

Cetiner, B et al. (2020). “Comparison of the arabinoxylan composition and physical properties of old and modern bread wheat (Triticum aestivum L.) and landraces genotypes”. Cereal Chemistry 97(2), pp. 505–514. DOI: https://doi.org/10.1002/CCHE.10265. DOI: https://doi.org/10.1002/cche.10265

Chaloulos, P et al. (2021). “Effect of drying and grinding or micro-grinding process on physical and rheological properties of whole cladode (Opuntia ficus-indica) flour”. LWT 151, p. 112171. DOI: https://doi.org/10.1016/j.lwt.2021.112171. DOI: https://doi.org/10.1016/j.lwt.2021.112171

Chaugule, A A and S N Mali (2016). “Identification of paddy varieties based on novel seed angle features”. Computers and Electronics in Agriculture 123, pp. 415–422. DOI: https://doi.org/10.1016/J.COMPAG.2016.03.012. DOI: https://doi.org/10.1016/j.compag.2016.03.012

Cole, M E et al. (1991). “Color of Pregelatinized Pasta as Influenced by Wheat Type and Selected Additives”. Journal of Food Science 56(2), pp. 488–493. DOI: https://doi.org/10.1111/j.1365-2621.1991.tb05310.x. DOI: https://doi.org/10.1111/j.1365-2621.1991.tb05310.x

Cseh, A et al. (2021). “Exploring the legacy of Central European historical winter wheat landraces”. Scientific Reports 11(1), pp. 1–14. DOI: https://doi.org/10.1038/s41598-021-03261-4. DOI: https://doi.org/10.1038/s41598-021-03261-4

Dholakia, B B et al. (2008). “Molecular marker analysis of kernel size and shape in bread wheat”. Plant Breeding 122(5), pp. 392–395. DOI: https://doi.org/10.1046/j.1439-0523.2003.00896.x. DOI: https://doi.org/10.1046/j.1439-0523.2003.00896.x

Douma, C et al. (2016). “Diversity of agricultural plants on Lesvos Island (Northeast Aegean, Greece) with emphasis on fruit trees”. Scientia Horticulturae 210, pp. 65–84. DOI: https://doi.org/10.1016/J.SCIENTA.2016.07.009. DOI: https://doi.org/10.1016/j.scienta.2016.07.009

Dowell, F E (1998). “Automated Color Classification of Single Wheat Kernels Using Visible and Near-Infrared Reflectance”. Cereal Chemistry Journal 75(1), pp. 142–144. DOI: https://doi.org/10.1094/CCHEM.1998.75.1.142. DOI: https://doi.org/10.1094/CCHEM.1998.75.1.142

Fitzpatrick, J J, S A Barringer, and T Iqbal (2004). “Flow property measurement of food powders and sensitivity of Jenike’s hopper design methodology to the measured values”. Journal of Food Engineering 61(3), pp. 399–405. DOI: https://doi.org/10.1016/S0260-8774(03)00147-X. DOI: https://doi.org/10.1016/S0260-8774(03)00147-X

Frankin, S et al. (2021). “In-field comparative study of landraces vs. Modern wheat genotypes under a mediterranean climate”. Plants(12), pp. 10–10. DOI: https://doi.org/10.3390/plants10122612. DOI: https://doi.org/10.3390/plants10122612

Gegas, V C et al. (2010). “A genetic framework for grain size and shape variation in wheat”. Plant Cell 22(4), pp. 1046–1056. DOI: https://doi.org/10.1105/tpc.110.074153. DOI: https://doi.org/10.1105/tpc.110.074153

Gelelcha, F, F Kumsa, and T Kuma (2023). “On-farm genetic diversity of wheat (Triticum aestivum spp) Digalu Tijo District, Arsi zone, Ethiopia”. Heliyon, pp. 9–9. DOI: https://doi.org/10.1016/J.HELIYON.2022.E12775. DOI: https://doi.org/10.1016/j.heliyon.2022.e12775

Gharib, M A A H et al. (2021). “Characterization of wheat landraces and commercial cultivars based on morpho-phenological and agronomic traits”. Cereal Research Communications 49(1), pp. 149–159. DOI: https://doi.org/10.1007/s42976-020-00077-2. DOI: https://doi.org/10.1007/s42976-020-00077-2

Gómez, M et al. (2009). “Evolución de la calidad panadera de variedades de trigo cultivadas en España”. Spanish Journal of Agricultural Research 7(3), pp. 585–595. DOI: https://doi.org/10.5424/sjar/2009073-443. DOI: https://doi.org/10.5424/sjar/2009073-443

Grillo, O, S Blangiforti, and G Venora (2017). “Wheat landraces identification through glumes image analysis”. Computers and Electronics in Agriculture 141, pp. 223–231. DOI: https://doi.org/10.1016/j.compag.2017.07.024. DOI: https://doi.org/10.1016/j.compag.2017.07.024

Haghshenas, A, Y Emam, and S Jafarizadeh (2022). “Wheat grain width: a clue for re-exploring visual indicators of grain weight”. Plant Methods 18(1), pp. 1–16. DOI: https://doi.org/10.1186/S13007-022-00891-1. DOI: https://doi.org/10.1186/s13007-022-00891-1

Hammer, K, A A Filatenko, and K Pistrick (2011). “Taxonomic remarks on Triticum L. and ×Triticosecale Wittm”. Genetic Resources and Crop Evolution 58(1), pp. 3–10. DOI: https://doi.org/10.1007/s10722-010-9590-4. DOI: https://doi.org/10.1007/s10722-010-9590-4

Haudry, A et al. (2007). “Grinding up Wheat: A Massive Loss of Nucleotide Diversity Since Domestication”. Molecular Biology and Evolution 24(7), pp. 1506–1517. DOI: https://doi.org/10.1093/MOLBEV/MSM077. DOI: https://doi.org/10.1093/molbev/msm077

HNMS (2023). Hellenic National Meteorological Service. URL: http://www.emy.gr/emy/en/climatology/climatology.

Igrejas, G et al. (2002). “Genetical, biochemical and technological parameters associated with biscuit quality. II. Prediction using storage proteins and quality characteristics in a soft wheat population”. Journal of Cereal Science 36(2), pp. 187–197. DOI: https://doi.org/10.1006/jcrs.2002.0452. DOI: https://doi.org/10.1006/jcrs.2002.0452

Jatayev, S et al. (2020). “Green revolution ‘stumbles’ in a dry environment: Dwarf wheat with Rht genes fails to produce higher grain yield than taller plants under drought”. Plant Cell and Environment 43(10), pp. 2355–2364. DOI: https://doi.org/10.1111/pce.13819. DOI: https://doi.org/10.1111/pce.13819

Javaid, M M, M A Rabbani, and A Rastina (2005). “Phenotypic diversity and trait association in bread wheat (Triticum aestivum L.) landraces from Baluchistan”. Pakistan Journal of Botany 37(4), pp. 949–957. URL: https://www.researchgate.net/publication/287626437_Phenotypic_diversity_and_trait_association_in_bread_wheat_Triticum_aestivum_L_landraces_from_Baluchistan_Pakistan.

Karamanos, A J et al. (2017). “Assessing Greek Bread Wheat Landraces for their Drought Resistance Strategies”. Crop Science 57(1), pp. 416–426. DOI: https://doi.org/10.2135/CROPSCI2016.06.0524. DOI: https://doi.org/10.2135/cropsci2016.06.0524

Karimizadeh, R, P Sharifi, and M Mohammadi (2012). “Correlation and path coefficient analysis of grain yield and yield components in durum wheat under two irrigated and rainfed condition”. International Journal of Agriculture: Research and Review 2(3), pp. 277–283.

Khoshroo, A et al. (2014). “Classification of Wheat Cultivars Using Image Processing and Artificial Neural Networks”. Agricultural Communications 2(1), pp. 17–22.

Khoury, C K et al. (2022). “Crop genetic erosion: understanding and responding to loss of crop diversity”. New Phytologist 233(1), pp. 84–118. DOI: https://doi.org/10.1111/NPH.17733. DOI: https://doi.org/10.1111/nph.17733

Kondi´c, D et al. (2020). “Evaluation of grain characteristics of domestic wheat (Triticum aestivum L.) obsolete cultivars and landraces”. Italian Journal of Agronomy 15(1), pp. 3–9. DOI: https://doi.org/10.4081/ija.2020.1345. DOI: https://doi.org/10.4081/ija.2020.1345

Kyzeridis, N, A Biesantz, and P Limberg (1995). “Vergleichende Feldversuche mit Land- und Zuchtsorten von Durumweizen (Triticum turgidum var. durum) unter verschiedenen ökologischen Bedingungen im Mittelmeerraum”. Journal of Agronomy and Crop Science 174(2), pp. 133–144. DOI: https://doi.org/10.1111/J.1439-037X.1995.TB00204.X. DOI: https://doi.org/10.1111/j.1439-037X.1995.tb00204.x

Liu, K (2008). “Measurement of Wheat Hardness by Seed Scarifier and Barley Pearlerand Comparison with Single-Kernel Characterization System”. Cereal Chemistry 85(2), pp. 165–173. DOI: https://doi.org/10.1094/CCHEM-85-2-0165. DOI: https://doi.org/10.1094/CCHEM-85-2-0165

López-Fernández, M et al. (2021). “Exploring the End-Use Quality Potential of a Collection of Spanish Bread Wheat Landraces”. Plants 10(4). DOI: https://doi.org/10.3390/plants10040620. DOI: https://doi.org/10.3390/plants10040620

Mandala, I G and S V Protonotariou (2021). “Physical properties of food materials”. Engineering Principles of Unit Operations in Food Processing, pp. 45–64. DOI: https://doi.org/10.1016/b978-0-12-818473-8.00015-3. DOI: https://doi.org/10.1016/B978-0-12-818473-8.00015-3

Maxted, N, S Kell, and J Magos Brehm (2011). Options to Promote Food Security: on-farm Management and in situ Conservation of Plant Resources for Food and Agriculture. URL: https://www.fao.org/3/am489e/am489e.pdf.

Mecha, B et al. (2017). “Correlation and Path Coefficient Studies of Yield and Yield Associated Traits in Bread Wheat (Triticum aestivum L.) Genotypes.” Advances in Plants & Agriculture Research 6(5), pp. 128–136. DOI: https://doi.org/10.15406/apar.2017.06.00226. DOI: https://doi.org/10.15406/apar.2017.06.00226

Moghaddam, M, B Ehdaie, and J G Waines (1997). “Genetic variation and interrelationships of agronomic characters in landraces of bread wheat from southeastern Iran”. Euphytica 95(3), pp. 361–369. DOI: https://doi.org/10.1023/A:1003045616631. DOI: https://doi.org/10.1023/A:1003045616631

Mondini, L, H Grausgruber, and M A Pagnotta (2013). “Evaluation of European emmer wheat germplasm for agro-morphological, grain quality traits and molecular traits”. Genetic Resources and Crop Evolution(1), pp. 69–87. DOI: https://doi.org/10.1007/S10722-013-0016-Y. DOI: https://doi.org/10.1007/s10722-013-0016-y

Moragues, M et al. (2006). “Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mediterranean basin I: Yield components”. Field Crops Research 95(2-3), pp. 194–205. DOI: https://doi.org/10.1016/j.fcr.2005.02.009. DOI: https://doi.org/10.1016/j.fcr.2005.02.009

Nazco, R et al. (2014). “Durum wheat (Triticum durum Desf.) Mediterranean landraces as sources of variability for allelic combinations at Glu-1/Glu-3 loci affecting gluten strength and pasta cooking quality”. Genetic Resources and Crop Evolution(6), pp. 1219–1236. DOI: https://doi.org/10.1007/s10722-014-0104-7. DOI: https://doi.org/10.1007/s10722-014-0104-7

Newton, A C et al. (2010). “Cereal landraces for sustainable agriculture. A review”. Agronomy for Sustainable Development 30, pp. 237–269. DOI: https://doi.org/10.1051/agro/2009032. DOI: https://doi.org/10.1051/agro/2009032

Okamoto, Y et al. (2013). “Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines”. Breeding Science 63(4), pp. 423–429. DOI: https://doi.org/10.1270/jsbbs.63.423. DOI: https://doi.org/10.1270/jsbbs.63.423

Papadakis, I (1929). Scientific report I. Plant Breeding Station Thessaloniki. Percival, J (1921). The wheat plant; a monograph. DOI: https://doi.org/10.5962/bhl.title.17154. DOI: https://doi.org/10.5962/bhl.title.17154

Ponce-García, N et al. (2016). “Mechanical Properties in Wheat (Triticum aestivum) Kernels Evaluated by Compression Tests: A Review”. Viscoelastic and Viscoplastic Materials. DOI: https://doi.org/10.5772/64171. DOI: https://doi.org/10.5772/64171

Posner, E S (2009). “Wheat Flour Milling”. In: Wheat: Chemistry and Technology. Ed. by K Khan, pp. 119–152. URL: https://www.elsevier.com/books/wheat-chemistry-and- technology/khan/978-1-891127-55-7. DOI: https://doi.org/10.1094/9781891127557.005

Preiti, G et al. (2022). “A Comparative Assessment of Agronomic and Baking Qualities of Modern/Old Varieties and Landraces of Wheat Grown in Calabria (Italy)”. Foods 11(15), p. 2359. DOI: https://doi.org/10.3390/foods11152359. DOI: https://doi.org/10.3390/foods11152359

Purugganan, M D (2019). “Evolutionary Insights into the Nature of Plant Domestication”. Current Biology 29(14), pp. 705–714. DOI: https://doi.org/10.1016/J.CUB.2019.05.053. Robbana, C et al. (2021). “Unlocking the Patterns of the Tunisian Durum Wheat Landraces DOI: https://doi.org/10.1016/j.cub.2019.05.053

Genetic Structure Based on Phenotypic Characterization in Relation to Farmer’s Vernacular Name”. Agronomy 11(4), p. 634. DOI: https://doi.org/10.3390/agronomy11040634. DOI: https://doi.org/10.3390/agronomy11040634

Roselló, M et al. (2018). “Pasta-making quality QTLome from mediterranean durum wheat landraces”. Frontiers in Plant Science 871. DOI: https://doi.org/10.3389/fpls.2018.01512. DOI: https://doi.org/10.3389/fpls.2018.01512

Ruisi, P et al. (2021). “Influence of grain quality, semolinas and baker’s yeast on bread made from old landraces and modern genotypes of Sicilian durum wheat”. Food Research International 140, pp. 110029–110029. DOI: https://doi.org/10.1016/J.FOODRES.2020.110029. DOI: https://doi.org/10.1016/j.foodres.2020.110029

Saleh, M M (2020). “Stress breeding of neglected tetraploid primitive wheat (Triticum dicoccum, Triticum carthlicum and Triticum polonicum)”. Current Botany, pp. 99–110. DOI: https://doi.org/10.25081/CB.2020.V11.6100. DOI: https://doi.org/10.25081/cb.2020.v11.6100

Schuler, S F et al. (1995). “Relationship of Test Weight and Kernel Properties to Milling and Baking Quality in Soft Red Winter Wheat”. Crop Science 35(4), pp. 949–953. DOI: https://doi.org/10.2135/cropsci1995.0011183X003500040001x. DOI: https://doi.org/10.2135/cropsci1995.0011183X003500040001x

Sciacca, F et al. (2014). “Evolution of durum wheat from Sicilian landraces to improved varieties”. In: Proceedings of the International Symposium on Genetics and Breeding of Durum Wheat. Ed. by E Porceddu, A B Damania, and C O Qualset. Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 110. Bari: CIHEAM, pp. 139–145.

Shewry, P R (2018). “Do ancient types of wheat have health benefits compared with modern bread wheat?” Journal of Cereal Science 79, pp. 469–476. DOI: https://doi.org/10.1016/j.jcs.2017.11.010. DOI: https://doi.org/10.1016/j.jcs.2017.11.010

Shewry, P R and S J Hey (2016). “Do we need to worry about eating wheat?” Nutrition Bulletin 41(1), pp. 6–13. DOI: https://doi.org/10.1111/nbu.12186. DOI: https://doi.org/10.1111/nbu.12186

Shoormij, F et al. (2022). “Concurrent improvement of durum and emmer wheat through reciprocal backcrossing and hybridization”. Agronomy Journal 114(6), pp. 3074–3082. DOI: https://doi.org/10.1002/AGJ2.21183. DOI: https://doi.org/10.1002/agj2.21183

Smykalova, Iva et al. (2013). “Phenotypic evaluation of flax seeds by image analysis”. Industrial Crops and Products 47, pp. 232–238. DOI: https://doi.org/10.1016/J.INDCROP.2013.03.001. DOI: https://doi.org/10.1016/j.indcrop.2013.03.001

Smykalova, I et al. (2011). “Morpho-colorimetric traits of Pisum seeds measured by an image analysis system”. Seed Science and Technology 39(3), pp. 612–626. DOI: https://doi.org/10.15258/SST.2011.39.3.08. DOI: https://doi.org/10.15258/sst.2011.39.3.08

Thanopoulos, R et al. (2021). “State of crop landraces in Arcadia (Greece) and in-situ conservation potential”. Diversity 13(11). DOI: https://doi.org/10.3390/D13110558. DOI: https://doi.org/10.3390/d13110558

Thomas, K et al. (2013). “Plant genetic resources in a touristic island: the case of Lefkada”. Genetic Resources and Crop Evolution 60(8), pp. 2431–2455. DOI: https://doi.org/10.1007/S10722-013-0011-3. DOI: https://doi.org/10.1007/s10722-013-0011-3

Tomás, D et al. (2020). “Assessment of Four Portuguese Wheat Landrace Diversity to Cope With Global Warming”. Frontiers in Plant Science 11, pp. 1803–1803. DOI: https://doi.org/10.3389/fpls.2020.594977. DOI: https://doi.org/10.3389/fpls.2020.594977

Travlos, I S et al. (2012). “Screening of Greek wheat landraces for their yield responses under arid conditions”. International Journal of Plant Production 6(2), pp. 225–238. DOI: https://doi.org/10.22069/ijpp.2012.777.

Ulukan, H (2021). “Climate Change and Global Warming Effect(s) on Wheat Landraces: A General Approach”. Wheat Landraces, pp. 169–191. DOI: https://doi.org/10.1007/978-3-030-77388-5_9. DOI: https://doi.org/10.1007/978-3-030-77388-5_9

UPOV (2012). International union for the protection of new varieties of plants durum wheat UPOV Code: TRITI_TUR_DUR Triticum turgidum L. subsp. durum (Desf.) Husn. URL: https://www.upov.int/edocs/tgdocs/en/tg120.pdf.

UPOV (2017). International union for the protection of new varieties of plants wheat UPOV Code(s): TRITI_AES Triticum aestivum L. emend. Fiori et Paol. Guidelines for the conduct of tests for distinctness, uniformity and stability. URL: https://www.upov.int/edocs/tgdocs/en/tg003.pdf.

Van De Wouw, M et al. (2010). “Genetic erosion in crops: Concept, research results and challenges”. Plant Genetic Resources: Characterisation and Utilisation 8(1), pp. 1–15. DOI: https://doi.org/10.1017/S1479262109990062. DOI: https://doi.org/10.1017/S1479262109990062

Venora, G, O Grillo, and R Saccone (2009). “Quality assessment of durum wheat storage centres in Sicily: Evaluation of vitreous, starchy and shrunken kernels using an image analysis system”. Journal of Cereal Science 49(3), pp. 429–440. DOI: https://doi.org/10.1016/J.JCS.2008.12.006. DOI: https://doi.org/10.1016/j.jcs.2008.12.006

Wiersma, J J et al. (2001). “Recurrent Selection for Kernel Weight in Spring Wheat”. Crop Science 41(4), pp. 999–1005. DOI: https://doi.org/10.2135/cropsci2001.414999x. DOI: https://doi.org/10.2135/cropsci2001.414999x

Würschum, T et al. (2017). “A modern Green Revolution gene for reduced height in wheat”. The Plant Journal 92(5), pp. 892–903. DOI: https://doi.org/10.1111/TPJ.13726. DOI: https://doi.org/10.1111/tpj.13726

Zarkti, H et al. (2010). “Detection of genetic diversity in Moroccan durum wheat accessions using agro-morphological traits and microsatellite markers”. African Journal of Agricultural Research 5(14), pp. 1837–1844. URL: https://hdl.handle.net/20.500.11766/13403.

Zeven, A C (1998). “Landraces: A review of definitions and classifications”. Euphytica 104(2), pp. 127–139. DOI: https://doi.org/10.1023/A:1018683119237. DOI: https://doi.org/10.1023/A:1018683119237

Zheng, W, D Sun, and F Pan (2012). “Analysis on quality characters diversity of wheat landraces from Yangtze River valley”. Advances in Intelligent and Soft Computing, 134 AISC, pp. 385–396. DOI: https://doi.org/10.1007/978-3-642-27537-1_48. DOI: https://doi.org/10.1007/978-3-642-27537-1_48